
Approximate Probabilistic Model Checking

Thomas Hérault1, Richard Lassaigne2, Frédéric Magniette1, and
Sylvain Peyronnet1

1 LRI, University Paris XI
{herault,magniett,syp}@lri.fr

2 University Paris VII
lassaign@logique.jussieu.fr

Abstract. Symbolic model checking methods have been extended re-
cently to the verification of probabilistic systems. However, the represen-
tation of the transition matrix may be expensive for very large systems
and may induce a prohibitive cost for the model checking algorithm. In
this paper, we propose an approximation method to verify quantitative
properties on discrete Markov chains. We give a randomized algorithm to
approximate the probability that a property expressed by some positive
LTL formula is satisfied with high confidence by a probabilistic system.
Our randomized algorithm requires only a succinct representation of the
system and is based on an execution sampling method. We also present
an implementation and a few classical examples to demonstrate the ef-
fectiveness of our approach.

1 Introduction

In this paper, we address the problem of verifying quantitative properties on
discrete time Markov chains (DTMC). We present an efficient procedure to ap-
proximate model checking of positive LTL formulas on probabilistic transition
systems. This procedure decides if the probability of a formula over the whole
system is greater than a certain threshold by sampling finite execution paths.
It allows us to verify monotone properties on the system with high confidence.
For example, we can verify a property such as : “the probability that the mes-
sage sent will be received without error is greater than 0.99”. This method is an
improvement on the method described in [16].

The main advantage of this approach is to allow verification of formulas even
if the transition system is huge, even without any abstraction. Indeed, we do
not have to deal with the state space explosion phenomenon because we verify
the property on only one finite execution path at a time. This approach can be
used in addition to classical probabilistic model checkers when the verification
is intractable.

Our main results are:

– A method that allows the efficient approximation of the satisfaction proba-
bility of monotone properties on probabilistic systems.

B. Steffen and G. Levi (Eds.): VMCAI 2004, LNCS 2937, pp. 73–84, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

74 T. Hérault et al.

– A tool named APMC that implements the method. We use it to verify ex-
tremely large systems such as the Pnueli and Zuck’s 500 dining philosophers.

The paper is organized as follows. In Section 2, we review related work on
probabilistic verification of qualitative and quantitative properties. In Section 3,
we consider fully probabilistic systems and classical LTL logic. In Section 4, we
explain how to adapt the main idea of the bounded model checking approach
to the probabilistic framework. In Section 5, we present a randomized algorithm
for the approximation of the satisfaction probability of monotone properties. In
Section 6, we present our tool and give experimental results and compare them
with the probabilistic model checker PRISM [7].

2 Related Work

Several methods have been proposed to verify a probabilistic or a concurrent
probabilistic system against LTL formulas. Vardi and Wolper [26,27] developed
an automata theoretical approach for verifying qualitative properties stating
that a linear time formula holds with probability 0 or 1. Pnueli and Zuck [22]
introduced a model checking method for this problem.

Courcoubetis and Yannakakis [5] studied probabilistic verification of quan-
titative properties expressed in the linear time framework. For the fully proba-
bilistic case, the time complexity of their method is polynomial in the size of the
state space, and exponential in the size of the formula. For the concurrent case,
the time complexity is linear in the size of the system, and double exponential
in the size of the formula.

Hansson and Jonsson [9] introduced the logic PCTL (Probabilistic Computa-
tion Tree Logic) and proposed a model checking algorithm for fully probabilistic
systems. They combined reachability-based computation, as in classical model
checking, and resolution of systems of linear equations to compute the proba-
bility associated with the until operator. For concurrent probabilistic systems,
Bianco and de Alfaro [3] showed that the minimal and maximal probabilities
for the until operator can be computed by solving linear optimization problems.
The time complexity of these algorithms are polynomial in the size of the system
and linear in the size of the formula.

There are a few model checking tools that are designed for the verification of
quantitative specifications. ProbVerus [8] uses PCTL model checking and sym-
bolic techniques to verify PCTL formulas on fully probabilistic systems. PRISM
[7,15] is a probabilistic symbolic model checker that can check PCTL formulas
on fully or concurrent probabilistic systems. Reachability-based computation
is implemented using BDDs, and numerical analysis may be performed by a
choice between three methods: MTBDD-based representation of matrices, con-
ventional sparse matrices, or a hybrid approach. The Erlangen-Twente Markov
Chain Checker [10] (E � MC2) supports model checking of continuous-time
Markov chains against specifications expressed in continuous-time stochastic
logic (CSL). Rapture, presented in [6] and [12] uses abstraction and refinement
to check a subset of PCTL over concurrent probabilistic systems.

Approximate Probabilistic Model Checking 75

In [28], Younes and Simmons described a procedure for verifying properties of
discrete event systems based on Monte-Carlo simulation and statistical hypoth-
esis testing. This procedure uses a refinement technique to build statistical tests
for the satisfaction probability of CSL formulas. Their logic framework is more
general than ours, but they cannot predict the sampling size, in contrast with
our approximation method in which this size is exactly known and tractable.
Rabinovich [24] gives an algorithm to calculate the probability that a property
of a probabilistic lossy channel system is satisfied. Monniaux [18] defined ab-
stract interpretation of probabilistic programs to obtain over-approximations
for probability measures. We use a similar Monte-Carlo method to approximate
quantitative properties.

3 Probabilistic Transition Systems

In this section, we introduce the classical concepts for the verification of proba-
bilistic systems.

Definition 1. A Discrete Time Markov Chain (DTMC) is a pair M = (S, P)
where S is a finite or enumerable set of states and P : S × S → [0, 1] is a
transition probability function, i.e. for all s ∈ S,

∑
t∈S P (s, t) = 1. If S is finite,

we can consider P to be a transition matrix.

The notion of DTMC can be extended to the notion of probabilistic transition
system by adding a labeling function.

Definition 2. A fully probabilistic transition system (PTS) is a structure M =
(S, P, I, L) where (S,P) is a DTMC, I is the set of initial states and L : S →
P(AP) a function which labels each state with a set of atomic propositions.

Definition 3. A path σ of a PTS is a finite or infinite sequence of states
(s0, s1, . . . , si, . . .) such that P (si, si+1) > 0 for all i ≥ 0.

We denote by Path(s) the set of paths whose first state is s. We note also
σ(i) the (i+1)-th state of path σ and σi the path (σ(i), σ(i+1), . . .). The length
of a path σ is the number of states in the path and is denoted by |σ|, this length
can be infinite.

Definition 4. For each PTS M and state s, we may define a probability mea-
sure Prob on the set Path(s). Prob denotes here the unique probability measure
on the Borel field of sets generated by the basic cylinders
{σ/σ is a path and(s0, s1, . . . , sn) is a prefix of σ} where
Prob({σ/σ is a path and(s0, s1, . . . , sn) is a prefix of σ}) =

∏n
i=1 P (si−1, si).

Definition 5. Let σ be a path of length k in a PTS M. The satisfaction of a
LTL formula on σ is defined as follows:

– M, σ |= a iff a ∈ L(σ(0)).
– M, σ |= ¬φ iff M, σ �|= φ.
– M, σ |= φ ∧ ψ iff M, σ |= φ and M, σ |= ψ.

76 T. Hérault et al.

– M, σ |= Xφ iff M, σ1 |= φ and | σ |> 0.
– M, σ |= φUψ iff there exists 0 ≤ j ≤ k s.t. M, σj |= ψ and for all i < j

M, σi |= φ.

We now introduce a fragment of LTL which expresses only monotone prop-
erties.

Definition 6. The essentially positive fragment (EPF) of LTL is the set of for-
mulas built from atomic formulas (p), their negations (¬p), closed under ∨, ∧
and the temporal operators X,U .

Definition 7. Let Pathk(s) be the set of all paths of length k in a PTS starting
at s ∈ I. The probability of a LTL formula φ on Pathk(s) is the measure of
paths satifying φ (as stated in Definition 5) in Pathk(s).

Definition 8. An LTL formula φ is said to be monotone if and only if for all
k, for all paths σ of length k, M, σ |= φ =⇒ M, σ+ |= φ, where σ+ is any path
of which σ is a prefix.

In [26], it is shown that for any LTL formula φ, probabilistic transition system
M and state s, the set of paths {σ/σ(0) = s and M, σ |= φ} is measurable. We
denote by Prob[φ] the measure of this set.

4 Probabilistic Bounded Model Checking

In this section, we review the classical framework for bounded model checking
of linear time temporal formulas over transition systems. Then, we show that
we cannot directly extend this approach but we use the main idea of checking
formulas on paths of bounded length to approximate the target satisfaction
probability.

Biere, Cimatti, Clarke and Zhu [4] present a symbolic model checking tech-
nique based on SAT procedures instead of BDDs. They introduce bounded model
checking (BMC), where the bound correspond to the maximal length of a possible
counterexample. First, they give a correspondence between BMC and classical
model checking. Then they show how to reduce BMC to propositional satisfia-
bility in polynomial time.

To check the initial property φ, one should look for the existence of a coun-
terexample to φ, that is a path satisfying ψ = ¬φ for a given length k. In [4],
the following result is also stated: if one does not find such a counterexample for
k ≤ |S| × 2|ψ|, where S is the set of states, then the initial property is true. We
cannot hope to find a polynomial bound on k with respect to the size of S and
ψ unless NP=PSPACE, since the model checking problem for LTL is PSPACE-
complete (see [25]) and such a bound would yield a polynomial reduction to
propositional satisfiability.

We try to check Prob[ψ] ≥ b by considering Probk[ψ] ≥ b, i.e., on the proba-
bilistic space limited to the set of paths of length k. Following the BMC approach,
we could associate to a formula ψ and length k a propositional formula ψk in

Approximate Probabilistic Model Checking 77

such a way that a path of length k satisfying ψ corresponds to an assignment
satisfying ψk. Thus determining Probk[ψ] could be reduced to the problem of
counting the number of assignments satisfying a propositional formula, called
SAT [20]. Unfortunately, not only are no efficient algorithms known for such
counting problems, but they are believed to be strongly intractable (see, for in-
stance [20]). However, it is not necessary to do such a transformation since we
can evaluate directly the formula on one finite path. In the following, we use this
straightforward evaluation instead of SAT-solving methods.

For many natural formulas, truth at length k implies truth in the entire
model. These formulas are the so-called monotone formulas (see definition 8).
We consider the subset (EPF definition 6) of LTL formulas which have this
property.

EPF formulas include nested compositions of U but do not allow for nega-
tions in front. Nevertheless, this fragment can express various classical properties
of transition systems such as reachability, livelock-freeness properties and con-
vergence properties of protocols.

Proposition 1. Let φ be a LTL formula. If φ ∈ EPF, then φ is monotone.

The proof of this proposition is immediate from the structure of the formula.
The monotonicity of the property defined by an EPF formula gives the

following result.

Proposition 2. For any formula φ of the essentially positive fragment of LTL,
0 < b ≤ 1 and k ∈ N, if Probk[φ] ≥ b, then Prob[φ] ≥ b.

Indeed, the probability of an EPF formula to be true in the bounded model
of depth k is less or equal than the probability of the formula in any bounded
model of depth greater than k.

This proposition can be extended to any monotone formula but we restrict
our scope to EPF formulas to make our method fully automatic.

5 Approximate Probabilistic Model Checking

In order to calculate the satisfaction probability of a monotone formula, we have
to verify the formula on all paths of length k. Such a computation is intractable
in general since there are exponentially many paths to check. Thus, it is natural
to ask: can we approximate Probk[φ]? In this section, we propose an efficient
procedure to approximate this probability. The running time of this computation
is polynomial in the length of paths and the size of the formula.

In order to estimate the probabilities of monotone properties with a simple
randomized algorithm, we generate random paths in the probabilistic space un-
derlying the DTMC structure of depth k and compute a random variable A/N
which estimates Probk[ψ]. To verify a statement Probk[ψ] ≥ b, we test whether
A/N > b − ε. Our decision is correct with confidence (1 − δ) after a number of
samples polynomial in 1

ε and log 1
δ . This result is obtained by using Chernoff-

Hoeffding bounds [11] on the tail of the distribution of a sum of independent
random variables. The main advantage of the method is that we can proceed

78 T. Hérault et al.

with just a succinct representation of the transition graph, that is a succinct
description in an input language, for example Reactive Modules [1].

Definition 9. A succinct representation, or diagram, of a PTS M = (S, P, I, L)
is a representation of the PTS, that allows to generate algorithmically, for any
state s, the set of states t such that P (s, t) > 0.

The size of such a representation is in the same order of magnitude as the
PTS. Typically, for Reactives Modules, the size of the diagram is in O(n.p),
when the size of the PTS is in O(np).

In order to prove our result, we introduce the notion of fully polynomial
randomized approximation scheme (FPRAS) for probability problems. This no-
tion is analogous to randomized approximation schemes [13,19] for counting
problems. Our probability problem is defined by giving as input x a succinct
representation of a probabilistic system, a formula and a positive integer k. The
succinct representation is used to generate a set of execution paths of length k.
The solution of the probability problem is the probability measure µ(x) of the
formula over the set of execution paths. The difference with randomized approx-
imation schemes for counting problems is that for approximating probabilities,
which are rational numbers in the interval [0, 1], we only require approximation
with additive error.

Definition 10. A fully polynomial randomized approximation scheme (FPRAS)
for a probability problem is a randomized algorithm A that takes an input x, two
real numbers 0 < ε, δ < 1 and produces a value A(x, ε, δ) such that:

Prob
[|A(x, ε, δ) − µ(x)| ≤ ε

] ≥ 1 − δ.
The running time of A is polynomial in |x|, 1

ε and log 1
δ .

The probability is taken over the random choices of the algorithm. We call ε
the approximation parameter and δ the confidence parameter. By verifying the
formula on O(1

ε2 . log 1
δ) paths, we obtain an answer with confidence (1 − δ).

Consider the following randomized algorithm designed to approximate
Probk[ψ], that is the probability of an LTL formula over bounded DTMC of
depth k:

Generic approximation algorithm GAA
Input: diagram,ψ, k, ε, δ
N := 4 log(2

δ)/ε
2

A := 0
For i = 1 to N do
1. Generate a random path σ of length k with the diagram
2. If ψ is true on σ then A := A+ 1

Return A/N

Theorem 1. The generic approximation algorithm GAA is a fully randomized
approximation scheme for the probability p = Probk[ψ] for an LTL formula ψ
and p ∈]0, 1[.

Approximate Probabilistic Model Checking 79

Proof. The random variable A is the sum of independent random variables with
a Bernouilli distribution. We use the Chernoff-Hoeffding bound [11] to obtain
the result. Let X1, ..., XN be N independent random variables which take value
1 with probability p and 0 with probability (1 − p), and Y =

∑N
i=1Xi/N . Then

the Chernoff-Hoeffding bound gives Prob
[|Y − p| > ε

]
< 2e− Nε2

4 . In our case, if
N ≥ 4 log(2

δ)/ε
2, then Prob

[|A/N − p| ≤ ε
] ≥ 1 − δ where p = Probk[ψ].

The time needed to verify if a given path verifies ψ is polynomial in the
size of the formula. The number N of iterations is polynomial in 1

ε and log 1
δ . So

GAA is a fully polynomial randomized approximation scheme for our probability
problem.

This algorithm provides a method to verify quantitative properties expressed
by EPF formulas. To check the property Probk[ψ] ≥ b, we can test if the result
of the approximation algorithm is greater than b−ε. If Probk[ψ] ≥ b is true, then
the monotonicity of the property guarantees that Prob[ψ] ≥ b is true. Otherwise,
we increment the value of k within a certain bound to conclude that Prob[ψ] �≥ b.

The main problem of the method is to determine a bound on the value of
k. Unfortunately, this bound might be exponential in the numbers of states,
even for a simple reachability property. The bound is strongly related to the
cover time of the underlying Markov chain. The problem of the computation of
the cover time is known to be difficult when the input is given as a succinct
representation [17].

An other way to deal with the value of k is to shrink our attention to formulas
with bounded Until rather than classical Until. With this hypothesis, we can set
k to the maximum time bound in some subformulas of the specification. But
this is not completely satisfactory since we cannot handle general properties
with only bounded until.

Now, let us discuss the parameters ε and δ. The complexity of the algorithm
depends on log(1/δ), this allows us to set δ to very small values. In our experi-
ments, we set δ = 10−10, which seems to be a reasonable confidence ratio.
The dependance in ε is much more crucial, since the complexity is quadratic in
1/ε. We set ε = 10−2 in our experiments because this is the value that allows
the best tradeoff between verification quality and time.

6 APMC: An Implementation

In this section, we present some experimental results of our approximate model
checking method. These results were obtained with a tool we developed. This
tool, APMC, works in a distributed framework and allows the verification of ex-
tremely large systems such as the 300 dining philosophers problem. We compare
the performance of our method to the performance of PRISM. These results are
promising, showing that large systems can be approximately verified in seconds,
using very little memory.

APMC (Approximate Probabilistic Model Checker) is a GPL (Gnu Public
License) tool written in C with lex and yacc. It uses a client/server computation

80 T. Hérault et al.

model (described in Subsection 6.2) to distribute path generation and verification
on a cluster of machines.

APMC is simple to use: the user enters an LTL formula and a description of
a system written in the same variant of Reactive Modules as used by PRISM.
The user enters the target satisfaction probability for the property, the length
of the paths to consider and the approximation and confidence parameters ε
and δ. These parameters can be changed through a Graphical User Interface
(GUI), represented in Figure 1. These are the basic parameters, there are ad-
vanced parameters such as the choice of a specific strategy for the speed/space
compromise to use, but one can use a “by default” mode which is sufficiently
efficient in general. After this, the user clicks on “go” and waits for the result.
APMC is a fully automatic verification tool.

Fig. 1. The Graphical User Interface.

6.1 Standalone Use and Comparison with PRISM

We first consider a classical problem from the PRISM examples library [23]: the
dining philosophers problem. Let us quickly recall the problem: n philosophers
are sitting around a table, each philosopher spends most of its time thinking,
but sometimes gets hungry and wants to eat. To eat, a philosopher needs both
its right and left forks, but there are only n forks shared by all philosophers.
The problem is to find a protocol for the philosophers without livelock. Pnueli
and Zuck [21] give a protocol that is randomized. We ran experiments on a fully
probabilistic version of this protocol (that is, a DTMC version): there are no non-
deterministic transitions and the scheduling between philosophers is randomized.
For this protocol, we checked the following liveness property: “If a philosopher
is hungry, then with probability one, some philosopher will eventually eat”. This
property guarantees that the protocol is livelock free. The following table shows
our results using APMC and those of PRISM (model construction and model

Approximate Probabilistic Model Checking 81

checking time) on one 1.8 GHz Pentium 4 workstation with 512 MB of memory
under the Linux operating system. For this experiment, we let ε = 10−2 and
δ = 10−10.

number of phil. length APMC (time in sec.) PRISM (time in sec.) PRISM (states)
3 20 35 0.394 770
5 23 56 0.87 64858
10 30 125 11.774 4.21 × 109

15 42 242 64.158 2.73 × 1014

20 50 387 137.185 1.77 × 1019

25 55 531 2469.56 1.14 × 1024

30 65 823 out of mem. out of mem.
50 130 3579 out of mem. out of mem.
100 148 8364 out of mem out of mem.

On this example, we see that we can handle larger systems than PRISM,
more than 30 philosophers for Pnueli and Zuck’s philosophers, without having
to construct the entire model which contains 1024 states for 25 philosophers.
Note that during the computation, our tool uses very little memory. This is due
to the fact that the verification process never stores more than one path at a
time.

6.2 Cluster Use

In the previous subsection, we used APMC on a single machine, but to increase
the efficiency of the verification, APMC can distribute the computation on a
cluster of machines using a client/server architecture.

Let us briefly describe the client/server architecture of APMC. The model,
formula and other parameters are entered by the user via the Graphical User In-
terface which runs on the server (master). Both the model and formula are trans-
lated into C source code, compiled and sent to clients (the workers) when they
request a job. Regularly, workers send current verification results, receiving an
acknowledgment from the master, to know wether they have to continue or stop
the computation. Since the workers only need memory to store the generated
code and one path, the verification requires very little memory. Furthermore,
since each path is verified independently, there is no problem of load balancing.
Figure 4 shows the scalability of the implementation on Pnueli and Zuck’s din-
ing philosophers algorithm for 25 philosophers: computation time is divided by
two when we double the size of the cluster. This is a consequence of very low
communications overhead in the computation.

We used APMC to check properties of several fully probabilistic systems
modeled as DTMCs. In Figure 2, we consider Pnueli and Zuck’s Dining Philoso-
phers algorithm [21] for which we verify the liveness property and in Figure 3,
we consider a fully probabilistic version of the randomized mutual exclusion of
Pnueli and Zuck [21]. All the experiments were done with a cluster of 20 workers
(all are ATHLON XP1800+ under Linux) with ε = 10−2 and δ = 10−10.

82 T. Hérault et al.

phil. length time (sec.) max. memory (KBytes)
15 38 11 324
25 55 25 340
50 130 104 388
100 145 418 484
200 230 1399 676
300 295 4071 1012

Fig. 2. Dining philosophers: run-time and memory for 20 workers.

proc. length time (sec.) max. memory (KBytes)
3 120 13 316
5 250 35 328
10 520 146 408
15 1000 882 548
20 1400 1499 660

Fig. 3. Mutual exclusion: run-time and memory for 20 workers.

We are able to verify very large systems using a reasonable cluster of workers
and very little memory for each of them. In an additional experiment, with an
heterogeneous cluster of 32 machines, we were able to verify the Pnueli and
Zuck’s 500 philosophers in about four hours.

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

tim
e

(s
ec

.)

workers

phil25

Fig. 4. Scalability of the implementation: time vs. workers for 25 dining philosophers.

Approximate Probabilistic Model Checking 83

7 Conclusion

To our knowledge, this work is the first to apply randomized approximation
schemes to probabilistic model checking. We estimate the probability with a
randomized algorithm and conclude that satisfaction probabilities of EPF for-
mulas can be approximated. This fragment is sufficient to express reachability
and livelock-freeness properties. Our implementation was used to investigate the
effectiveness of this method. Our experiments point to an essential advantage of
the method: the use of very little memory. In practice, this means that we are
able to verify very large fully probabilistic models, such as the dining philoso-
pher’s problem with 500 philosophers. This method seems to be very useful when
classical verification is intractable.

Acknowledgments. We would like to thank Sophie Laplante for many helpful
discussions and suggestions, Marta Kwiatkowska and her group for their ad-
vice on PRISM. We also thank the anonymous referees for their constructive
feedback.

References

1. R. Alur and T.A. Henzinger. Reactive modules. in Proceedings of the 11th IEEE
Symposium on Logic in Computer Science, pp. 207–218, 1996.

2. APMC homepage. http://www.lri.fr/˜syp/APMC
3. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic

systems. Proc. FST&TCS, Lectures Notes in Computer Science, 1026:499–513,
1995.

4. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDD’s. Proc. of 5th TACAS, Lectures Notes in Computer Science, 1573:193–207,
1999.

5. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

6. P. D’Argenio, B. Jeannet, H. Jensen and K. Larsen. Reachability analysis of prob-
abilistic systems by successive refinements. Proc. of the joint PAPM/PROBMIV,
2001.

7. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the kro-
necker representation. In Proc. of 6th TACAS, Lectures Notes in Computer Science,
1785, 2000.

8. V. Hartonas-Garmhausen, S. Campos, and E. Clarke. Probverus: Probabilistic
symbolic model checking. In 5th International AMAST Workshop, ARTS’99, May
1999, Lecture Notes in Computer Science 1601, 1999.

9. H.Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

10. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. A Markov chain model
checker. Proc. of 6th TACAS, Lectures Notes in Computer Science, 1785:347–362,
2000.

11. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13–30, 1963.

84 T. Hérault et al.

12. B. Jeannet, P. R. D’Argenio and K. G. Larsen RAPTURE: A tool for verifying
Markov Decision Processes. In Proc. of CONCUR’02. 2002.

13. R.M. Karp, M. Luby and N. Madras. Monte-Carlo algorithms for enumeration and
reliability problems. Journal of Algorithms, 10:429–448, 1989.

14. J. Kemeny, J. Snell and A. Knapp. Denumerable markov chains. Springer-Verlag,
1976.

15. M. Kwiatkowska, G. Norman and D. Parker. Probabilistic symbolic model check-
ing with PRISM: a hybrid approach. In Proc. of 8th TACAS, Lecture Notes in
Computer Science 2280, 2002.

16. R. Lassaigne and S. Peyronnet. Approximate Verification of Probabilistic Systems.
In Proc. of the 2nd joint PAPM-PROBMIV, Lecture Notes in Computer Science
2399, 213–214, 2002.

17. L. Lovasz and P. Winkler. Exact mixing time in an unknown markov chain. Elec-
tronic journal of combinatorics, 1995.

18. D. Monniaux An abstract Monte-Carlo method for the analysis of probabilistic
programs (extended abstract). In 28th Symposium on Principles of Programming
Languages (POPL ’01), pages 93–101. Association for Computer Machinery, 2001.

19. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

20. C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
21. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-

tributed Computing, pages 1:53–72, 1986.
22. A. Pnueli and L. Zuck. Probabilistic verification. Information and Computation,

103(1):1–29, 1993.
23. PRISM homepage. http://www.cs.bham.ac.uk/˜dxp/prism/.
24. A. Rabinovich. Quantitative analysis of probabilistic channel systems. proc. of

30th ICALP, Lecture Notes in Computer Science 2719, 2003.
25. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal

logics. Journal of the ACM, 32(3):733–749, 1985.
26. M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-

grams. Proc. 26th Annual Symposium on Foundations of Computer Science, pages
327–338, 1985.

27. Moshe Y. Vardi, Pierre Wolper. An Automata-Theoretic Approach to Automatic
Program Verification (Preliminary Report). In Proceedings of the first IEEE Sym-
posium on Logic in Computer Science, pages 332–344, 1986.

28. H. L. S. Younes and R. G. Simmons. Probabilistic Verication of Discrete Event
Systems using Acceptance Sampling. In Proc. of the 14th International Conference
on Computer Aided Verification, Lecture Notes in Computer Science 2404, 223–
235. 2002.

	Introduction
	Related Work
	Probabilistic Transition Systems
	Probabilistic Bounded Model Checking
	Approximate Probabilistic Model Checking
	APMC: An Implementation
	Standalone Use and Comparison with PRISM
	Cluster Use

	Conclusion

